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Abstract
A pair of underdamped ratchets, coupled via a perturbed asymmetric potential,
is shown to make a transition to a fully synchronized state wherein stable
controlled transport is achieved when the coupling strength exceeds a threshold
at which the collective dynamics is attained. This transition to collective
transport is connected to a chaos-periodic/quasiperiodic bifurcation in which
current reversal is completely eliminated. Based on the Lyapunov stability
theory and linear matrix inequalities, we give some necessary and sufficient
criteria for stable controlled transport and obtain an exact analytic estimate of
the threshold (kth) for the onset of stable controlled current.

PACS numbers: 05.45.Xt, 05.45.Ac, 05.40.Fb, 05.45.Pq, 05.60.Cd

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The ratchet effect, that is, the possibility of realizing directed transport without net bias
in systems driven out of equilibrium, occurs in many natural situations ranging from
physical through chemical to biological systems. Current reversal is a particularly intriguing
phenomenon that has been central to recent experimental and theoretical investigations of
transport based on the ratchet mechanism. Much of the recent research interest in transport
problems relates to the physics of molecular motors, where unbiased, noise-induced transport
arises away from thermal equilibrium [1–3]. Such Brownian motors, especially ‘ratchet’
models, have been widely investigated for several reasons: (i) to describe and control
the mechanism underlying certain biological processes at both the cellular level as found
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in ion channels and the organ level, for instance muscle contraction [4]; (ii) to construct
nanoscale devices for guiding tiny particles aimed at particle separation, smoothing of atomic
surfaces during electromigration, and control of the motion of quantized flux vortices in
superconductors [2, 5]; and (iii) to explore the potential applications of the rectification
power of such devices in the design and operations of high performance and dependable
rectifiers, such as arrays of Josephson junction [6], long Josephson junctions [7], asymmetric
superconducting quantum interference devices [8] and quantum electronic devices [5]. Some
of these possibilities have already been demonstrated in practical applications [9–11].

The large variety of systems that exhibit the ratchet effect can be classified into two basic
types. Those in the first class, where the system is driven out of equilibrium by a pulsating force,
are called flashing ratchets. The second class is that of rocking (or correlation) ratchets wherein
the system is driven by an external unbiased driving force. The vast majority of these models
are overdamped, and noise plays a vital role in the transport process. Yet it has been found that
deterministic chaos induced by the inertial term in the model equation can equivalently replace
the role of noise [12, 13]. For inertial ratchets, moving in asymmetric rocking potentials, the
dynamics and transport properties are strongly dependent on the system’s parameters as well
as on the initial conditions; in particular, the current can suddenly change direction at specific
bifurcation points—these issues have been carefully investigated in [12–16] and the effects of
noise or disorder have also been reported [17–19].

Theoretical studies of ratchet models have been largely restricted to noninteracting or
single-particle systems. However, in reality, the interactions between particles are very
important and cannot be ruled out in ratchet systems. For instance, it is well known that
molecular motors do not operate as a single particle but congregate in groups that form
multimotors—the most prominent example being the actin–myosin system in muscles [20].
Similarly, systems such as microfluidic channels [21], 2DEG nanostructures with strong
electron–electron interactions [22] and granulated materials [24, 25], etc represent practical
situations where particle–particle interactions are essential. For this reason, the relevance of
two or more interacting particles and the effects of their collective dynamics on net transport
have attracted attention (e.g. [23, 26–33, 39–42] and references therein). Interaction among
identical ratchets can lead to a variety of synchronized dynamics (or collective effects), and
stable directed transport can be achieved when the strength of the interaction is larger than the
threshold beyond which full synchrony is achieved.

In general, synchronization can be understood as a collective state in which two or more
systems, whose dynamics can either be periodic or chaotic, adjust each other giving rise to
a common dynamical behaviour [34]. This can be achieved when the oscillators interact,
either by coupling or forcing. Synchronization is directly related to the observer problem in
control theory in which a feedback mechanism is designed for a receiver (response) system
using the transmitted signal of a transmitter (driver) so as to ensure that the controlled receiver
synchronizes with the transmitter [35]. On the other hand, the feedback could be such that
the information is mutually transmitted among the interacting systems. The design of the
effective interaction mechanisms or couplings required to achieve a desired synchronization
goal is of current interest. Two fundamental tasks in the analysis and synthesis of such
synchronizing systems are the stability of the synchronized state, and a precise determination of
the synchronization thresholds—these quantities are particularly relevant from the viewpoint
of practical applications [36], because they provide information regarding the operational
regime for optimal performance in coupled oscillators.

Recently, we showed that two mutually interacting ratchets in a perturbed asymmetric
potential underwent a transition from an on-off intermittently synchronized state to that of
full synchronization where collective transport was achieved [37]. In the present paper, we
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examine the transition to collective current and show that, depending on the strength of
the driving, it could be achieved through a chaos-periodic/quasiperiodic transition to full
synchronization during which current reversals are completely eliminated, thereby giving
rise to fully rectified transport. We also study the stability of the fully synchronized state
using the Lyapunov stability theory and linear matrix inequality (LMI) [38], and we then give
some sufficient conditions for global asymptotic synchronization, from which we estimate the
threshold coupling for the existence of collective and stable controlled transport. The paper is
organized as follows: in the next section, we start with a description of coupled ratchets and
in section 3 we provide a stability analysis for synchronization. We present numerical results
in section 4, and summarize our conclusions in section 5.

2. Coupled inertia ratchets

We consider an archetypal model of two coupled underdamped rocking ratchets [13]. Their
dynamics is given by

ẍi + bẋi +
dV (x1, x2)

dxi

= a cos(ωt) (i = 1, 2), (1)

where the normalized time t is measured in units of the small resonant frequency ω−1
0 of the

system, a, ω and b are the amplitude and frequency of the external forcing and the damping
parameter, respectively. V (x1,2) is the perturbed two-dimensional ratchet potential given as

V (x1, x2) = 2C − 1

4π2δ
[�(x1) + �(x2)] +

k

2
(x1 − x2)

2, (2)

where �(x1,2) = sin 2π(x1,2 −x0)+ 1
4 sin 4π(x1,2 −x0); the last term is the coupling term, and

k is the coupling strength which determines the dynamics and hence the transport properties
of equation (1). The parameter x0 in �(x1,2) is chosen such that when k = 0 the minima of
V (x1, x2) are located at the integers, whereas the other parameters are fixed. Here, we use
x0 = 0.82, C = 0.0173 and δ = 1.6.

Figure 1 shows the perturbed two-dimensional ratchet potential (2) for four different values
of the coupling strength k (k = 0, 0.05, 0.15, 1.0). The minima and maxima of the potential
are marked in blue and red respectively. Note that, as the coupling strength is increased, the
maxima of the potential V (x1, x2) move outwards, opening up a valley along the diagonal
where the two ratchets may most likely share values. This suggests that, for sufficiently
large coupling strength, the oscillators would cooperate and achieve optimal transport in some
favoured directions.

3. Stability and criteria for controlled transport

The system (1) exhibits intermittent synchronization over a wide range of k values with full
synchronization being achieved for large enough coupling strength [37], during which current
reversals are fully controlled. The stability of the fully synchronized state was treated in [37]
and the exact threshold was obtained numerically. In what follows, we show theoretically that
the fully synchronized manifold (�x(t) = x1(t) − x2(t) = 0) is stable and globally attractive.
We establish criteria for global and asymptotic stability of the system (1) on the manifold
�x(t) = 0, defining the collective state for which current reversals are completely eliminated.
We can re-express each isolated ratchet derived from equation (1) as

ẋi = yi

ẏi = −byi + σφ(xi) + a cos(ω0t) (i = 1, 2),
(3)
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(a) (b)

(c) (d)

Figure 1. Equipotential contours plot of V (x1, x2) with colors growing from blue (minima) to red
(maxima): (a) no interaction, k = 0, (b) weak coupling, k = 0.05, (c) moderate coupling, k = 0.15
and (d) strong coupling, k = 1.0.

where φ(xi) = 2 cos 2π(xi − x0) + cos 4π(xi − x0), xi = (xi, yi)
T ∈ R2 (i = 1, 2) are the

state variables and σ = 1
4πδ

. In compact vector form, the coupled system is

ẋ1 = Mx1 + f(x1) + m − u (4)

ẋ2 = Mx2 + f(x2) + m + u

u = K(x − y)
(5)

where

M =
(

0 1
0 −b

)
, f(x1) =

(
0

σφ(x1)

)
,

f(x2) =
(

0
σφ(x2)

)
, m =

(
0

a cos ω0t

)
,

and K ∈ R2×2 is a constant feedback matrix.
Let us define the synchronization error e, as the difference x1 − x2. Then, by subtracting

equation (5) from equation (4) one readily obtains

ė = (M − 2K + Q)e (6)

where

Q =
(

0 0
q(x1, x2) 0

)
,

and

q(x1, x2) = σφ(x1, x2)

x1 − x2
, (7)

where φ(x1, x2) = φ(x1) − φ(x2). Obviously, e = 0 is an equilibrium point of the error
system (6) for vanishing K and full synchronization means that any set of initial conditions
satisfies

lim
t→∞ ‖e‖ = lim

t→∞ ‖x1(t) − x2(t)‖ = 0 (8)
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where ‖ · ‖ represents the Euclidean norm of a vector. Thus, we treat the synchronization
problem as that of asymptotic stability of the error system (6). For this purpose, we shall employ
Lyapunov’s stability theory and LMI in [38] to establish criteria for global synchronization
according to equation (8). To begin with, we shall apply the following lemma to prove the
main theorems of this paper.

Lemma 1. For q(x1, x2) defined by (9), the inequality

|q(x1, x2)| � 2

δ
(9)

holds.

Proof. Since x0 = y0 = constant, by the differential mean-value theorem, the function
φ(x1, x2) can be expressed as

φ(x1, x2) = 4π(x1 − x2)(−sin ϕ − sin η); (10)

where ϕ, η ∈ [0, 2π ]. So that

q(x1, x2) = 4πσ(− sin ϕ − sin η) = − (sin ϕ + sin η)

δ
, (11)

and hence inequality (9) holds. �

We proceed by utilizing the stability theory for time-varying systems [38] to derive
sufficient criteria for global synchronization in the sense of the error system (6). Here, we
propose two theorems. First using the LMI, the following theorem is related to the general
control matrix:

K =
(

k11 k12

k21 k22

)
∈ R2×2. (12)

Theorem 1. If the coupling matrix K in (12) is chosen such that

4k11 + 4k22 + 2b > 0

8k11(2k22 + b) >

(
|1 − 2k12 − 2k21| +

2

δ

)2

,
(13)

then the coupled systems (4) and (5) achieve full synchrony.

Proof. According to the stability theory of time-varying systems [38], we know that the
system (6) is globally asymptotically stable at the equilibrium point e = (0, 0), if

M − 2K + Q(t) + (M − 2K + Q(t))T =
( −4k11 1 + q − 2(k12 + k21)

1 + q − 2(k12 + k21) −2b − 4k22

)
(14)

is negative definite. The eigenvalues λ of the matrix (14) above satisfy

λ2 + (2b + 4k11 + 4k22)λ + 8k11(b + 2k22) − (1 + q − 2(k12 + k21) = 0.

According to the Routh–Hurwitz criteria for matrices [44], the matrix (14) is negative definite
if and only if

2b + 4k11 + 4k22 > 0,

8k11(b + 2k22) − (1 + q − 2(k12 + k21))
2 > 0.

(15)

By lemma 1, we have

|1 + q − 2k12 − 2k21| � |1 − 2k12 − 2k21| +
2

δ
. (16)

Inequalities (16) hold if conditions (13) are satisfied. This completes the proof. �
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Based on lemma 1 and the above theorem some synchronization criteria with respect to
the coupling strength may be obtained, which are represented in the following corollaries.

Corollary 1. If the coupling matrix defined by K = diag(k1, k2) is chosen such that

4k1 + 4k2 + 2b > 0

8k1(2k2 + b) >

(
1 +

2

δ

)2

,
(17)

then the coupled systems (4) and (5) are fully synchronized.

Proof. Inequalities (17) can be obtained from inequalities (13) by setting k11 = k1, k22 = k2

and k12 = k21 = 0. �

Corollary 2. If the coupling k in equation (1) is selected such that

k >
−b +

√
b2 +

(
1 + 2

δ

)2

4
= k1

th, (18)

then the coupled systems (4) and (5) are fully synchronized.

Proof. Inequalities (18) can be obtained according to inequalities (17) by setting k1 = k2 = k.
�

Using the Lyapunov stability theory, the following theorem is related to the general control
matrix:

K =
(

k11 k12

k21 k22

)
∈ R2×2. (19)

Theorem 2. If there exists a positive definite symmetric matrix given by

P =
(

p11 p12

p12 p22

)
> 0 ∈ R2,

and the coupling matrix in (19) is chosen such that

�1 = −2k11p11 − 2k21|p12| + |p12|
(

2

σ

)
< 0

�2 = p12(1 − 2k12) − p22(2k22 + b) < 0

4�1�2 >

[
p11(1 − 2k12) − p12(2k11 + 2k22 + b) − 2p22k21 + p22

(
2

δ

)]2

,

(20)

then the coupled systems (4) and (5) achieve full synchrony.

Proof. Let us assume a positive definite, decrescent and radially unbounded quadratic
Lyapunov function of the form

V (e) = eT Pe, (21)

where P is a positive definite symmetric matrix as defined earlier. The derivative of the
Lyapunov function with respect to time, t, along the trajectory of the error system (6) is of the
form

V̇ (e) = ėT Pe + eT Pė. (22)

Substituting (6) into the system (22), we have

V̇ (e) = eT [(M − 2K + Q)T P + P(M − 2K + Q)]e (23)

6
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V̇ (e) < 0 if

γ = (M − 2K + Q)T P + P(M − 2K + Q) < 0, (24)

that is

γ =
(

μ11 μ12

μ12 μ22

)
, (25)

where μ11 = −4p11k11 +2p12(q −2k21), μ12 = p11(1−2k12)−p12(2k11 +2k22 +b)+p22(q −
2k21) and μ22 = 2p12(1 − 2k12) − 2p22(b + 2k22). The above symmetric matrix is negative
definite if and only if

−4p11k11 + 2p12(q − 2k21) < 0

2p12(1 − 2k12) − 2p22(b + 2k22) < 0 (26)

4[p12(q − 2k21) − 2p11k11][p12(1 − 2k12) − P ∗ > 0,

where P ∗ = [p22(b + 2k22)] − [p11(1 − 2k12) − p12(2k11 + 2k22 + b) + p22(q − 2k21)]2.
By lemma 1, we have −4p11k11 + 2p12(q − 2k21) � −4p11k11 − 4p12k21 + |2p12|q �

2�1 |p11(1 − 2k12) − p12(2k11 + 2k22 + b) + p22(q − 2k21)| � |p11(1 − 2k12) − p12(2k11 +
2k22 + b) − 2p22k21| + p22

(
2
δ

)
. Inequalities (26) hold if inequalities (20) are satisfied. This

completes the proof. �

Based on lemma 1 and the above theorem, some synchronization criteria with respect to
the coupling strength may be obtained, which are represented in the following corollaries.

Corollary 3. If the coupling matrix defined by K = diag(k1, k2) and the positive definite
symmetric matrix P defined earlier is chosen such that

k1 >
|p12|

(
2
δ

)
2p11

k2 >
p12 − bp22

2p22
(27)

β1 > β2,

where β1 = 4
[|p12|

(
2
δ

)− 2p11k1
]
[p12 −p22(2k2 + b)] and β2 = [|(p11 −p12(2k1 + 2k2 + b)| +

p22
(

2
δ

)]2
, then the coupled systems (4) and (5) achieve full synchrony.

Proof. Inequalities (27) can be obtained according to inequalities (26) with k11 = k1, k22 = k2

and k12 = k21 = 0. �

Corollary 4. The coupled systems (4) and (5) achieve global synchronization if the coupling
matrix K = diag{k, k} and the positive symmetric matrix P defined earlier are chosen such
that

k = max

(
|p12|

(
2
δ

)
2p11

,
p12 − bp22

2p22

)
� 0

16
(
p11p22 − p2

12

)
k2 − 8k[2p22|p12|

(
2

δ

)
+ Pbδ > 0,

(28)

where Pbδ = p11(p12 − bp22) − |p12(p11 − bp12)|] + 4|p12|
(

2
δ

)
(p12 − bp22) − [|p11 − bp12| +

p22
(

2
δ

)]2
.

Proof. Letting k1 = k2 = k in the partial synchronization conditions (27), inequality (28)
can be obtained.

7
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For k > 0 given by (28), we have
[
p11 −p12(4k+b)+p22

(
2
δ

)]2 �
[|p11 −bp12|+4k|p12|+

p22
(

2
δ

)]2
. Hence, inequality (28) can be obtained from the partial synchronization condition

(27) with k1 = k2 = k. Since p11p22 − p2
12 > 0, the solution k to inequality (28) exists. �

Remark. We may select p12 = 0, p11 = p22
(

2
δ

)
, to construct a positive definite matrix

P = p22

(
2
δ

0

0 1

)
.

Based on this matrix, the following algebraic synchronization condition can be obtained from
inequalities (28):

k >

√
b2 + 8

δ
− b

4
= k2

th. (29)

Note that conditions (18) and (29) are independent of the parameters of the driving force.
Thus we expect that, for different choices of external driving, different scenarios would arise.
By using parameter values b = 0.1 and δ = 1.6, we see that the two criteria yield k1

th = 0.538
and k2

th = 0.535, respectively, which are in good agreement.

4. Results and discussion

In this section, we present numerical simulation results to confirm the above analysis. In
figure 2, we use three indicators to quantify the transition to collective states, namely (i) the
bifurcation diagram for the error states e defining the difference between the state variables
x1 and x2 and the velocity of the particle; (ii) the average bare energies h [43] illustrating the
interaction mechanism; and (iii) the current J, quantifying the transport. We remark here that
our system is highly chaotic and, as such, a single trajectory approach is insufficient to capture
its full dynamics; implying that e, h and J have to be averaged out over a large number of
trajectories generated from the entire space [−1, 1] × [−1, 1] which forms the unit cell of the
resulting periodic structure. For a long time dynamics T, we can evaluate the error state (in
the Poincaré section) for a given trajectory as

ej = 1

T

∫ T

0

(
x

(j)

1 − x
(j)

2

)
dt, (30)

where the full error e = N−1 ∑N
j=1 ej , is evaluated over the total number of trajectories N.

The average bare energies [43] defined as

h
(j)

1,2 = 1

T

∫ T

0
h

(j)

1,2(t) dt; E
(j)

1,2(t) = p
2(j)

1,2

2
+ V

(
x

(j)

1 , x
(j)

2

)
, (31)

where p
(j)

1,2 is the associated momentum and V
(
x

(j)

1 , x
(j)

2

)
is the potential, are computed in the

same manner. The current of a particle (i = 1, 2) over the total number N of trajectories is
defined as

Ji = 1

M − nc

1

N

M∑
l=1

N∑
j=1

ẋ
(j)

i (tl) (i = 1, 2), (32)

where tl of xi(tl) is a given observation time. This gives the average velocity, which is then
further time-averaged over the number of observations M, where nc is an empirically obtained
cut-off allowing for transient effects, such that a converged current is obtained [16, 37].

8
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Figure 2. Transition to collective dynamics. (a) The bifurcation diagram for e versus k shows
oscillator locking at the critical bifurcation point, (b) the average bare energies h1,2 versus k, (c)
bifurcation diagram of V2(ẋ2) versus k and (d) corresponding ensemble current J2 in the same
coupling range. The parameters are set as a = 0.080 9472, b = 0.1, x0 = 0.82 and ω = 0.67.

First, we fix the parameters b = 0.1, ω = 0.67 and a = 0.080 9472. We display in
figure 2(a) the bifurcation of ej versus k. By inspection, we find that two remarkable
dynamical transitions are apparent. First, a sudden crisis occurs for low coupling strength
in which the chaotic behaviour gives way to a period two (P2) orbit in the periodic window.
The P2 orbit is then annihilated when the strength of the interaction increases, and chaotic
behaviour is again re-established for a wide range of k. Secondly, a sudden bifurcation takes
place around a critical value kcr (kcr ≈ 0.576) at which the dynamics of the two ratchets gets
locked in complete synchronization. For k � kcr, the orbits of the two oscillators are periodic,
as depicted by the bifurcation plot in figure 2(c). This is in reasonable agreement with our
theoretical predictions given by equations (18) and (29). The corresponding ensemble current
J+ = J1 +J2 shown in figure 2(b), for the same range of coupling, reveals that current reversals
still occur prior to the critical coupling strength (kcr). However, for k > kcr, the reversals are
completely controlled and stable negative transport is achieved.

Both the transition mechanism and the direction in which the particle’s motion is rectified
in the synchronized state depend on the parameters of the driving force. For fixed driving
frequency (ω = 0.67), we show in figure 3 the behaviour of the current J+ for several values
of the driving amplitude a. Clearly, we see three remarkable properties: (i) for a < 0.08,
the positive direction is favoured and the particles’ motion is rectified in this direction when

9
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Figure 3. Ensemble current J+ = J1+J2 versus coupling strength k for different driving amplitudes.
(a) Weak amplitude 0.07 � a � 0.01, (b) strong amplitude a > 0.1. Other parameters are fixed
as b = 0.1, x0 = 0.82 and ω = 0.67.

k > kcr (figure 3(a)); (ii) for 0.08 � a � 0.1, the negative direction is most favourable and
the motion is rectified in this direction when k > kcr as shown in figure 3(a)); and (iii) for
a > 0.12 the direction of rectification is strongly dependent on the value of k (figure 3(b)),
at variance with (i) and (ii), showing that conditions (18) and (29) do not hold for large a,
typically for a > 0.12.

To account for the deviation in (iii), we recall that, for larger values of the driving
amplitude a, there is a different bifurcation scenario—namely multistability of attractors are
manifest in the uncoupled system [45]. The synchronization dynamics of multistable systems
has been a longstanding, outstanding and challenging problem, and the analysis and synthesis
is moreover complicated when two identical multistable systems with fractal basin boundaries
are coupled, like the system that we study here. Some recent studies have shown that a variety
of synchronization behaviours could be observed [50–53], so that the departure which we
observed here should be expected. However, a detailed investigation of the characteristics of
the collective dynamics is on-going and will be reported elsewhere.
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Figure 4. Dynamics of the system (1) when k = 0. (a) Bifurcation diagram showing the range
for co-existing attractors, (b) Poincaré plot showing two co-existing attractors for a = 0.156,
and (c) the corresponding trajectories of the attractors in (b) obtained using the initial conditions:
(x0, ẋ0) = (−0.10, 0.25) and (x0, ẋ0) = (0.43,−0.12) (see details in [45]). The other parameters
are fixed at b = 0.1, x0 = 0.82 and ω = 0.67.

The bifurcation diagram of the system (1) for the driving interval 0.1517 � a � 0.1574
typically shows that chaotic regions co-exist with periodic regions in the interval 0.154 � a �
1.574 [45] (figure 4(a)). For a < 0.154, a period-1 attractor co-exists with a period-2 attractor.
In figure 4(b), we show the co-existing attractors for a = 0.156 in the Poincaré section,
together with the trajectories plotted by using the initial conditions (x0, ẋ0) = (−0.10, 0.25)

and (x0, ẋ0) = (0.43,−0.12) in figure 4(c). Accordingly, the bistable states exemplified above
could be interpreted as binary mixtures of particles [23]. While the former case illustrates a
binary mixture of non-identical particles of different sizes (i.e. chaotic and periodic), the latter
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corresponds to a binary mixture of two identical particles (i.e. two periodic orbits). Notably,
these situations are very significant and have been observed in recent experiments on transport
of K and Rb ions in an ion channel [46], particles of different size in asymmetric silicon pores
[49], pinned and interstitial vortices [47] and two different types of vortices [48]. For such
co-existing states, the net effects on the directed motion of particles when they interact, and
the design of effective control mechanisms aimed at regulating or rectifying the net transport,
are challenges that have attracted much attention from researchers. In this direction, Savel’ev
et al [23] proposed the auxiliary system approach which could be applicable in many practical
situations.

Note that the particle transport as captured by figure 3(b) shows that, as the strength
of the interaction is increased, there is an interplay between the co-existing states such that
either state is probable and one of the states (the most probable or stable attractor) would
survive and ‘drag’ the unstable state (attractor) for a given set of driving parameters. Thus,
independent of the initial conditions, transport can be achieved in either direction. Specifically,
figure 3(b) shows that for 0.075 � k � 0.475 and 0.55 � k � 0.815, the negative direction
is most probable; thus the particles’ motion is rectified in the negative direction; and for
0.47 � k � 0.55 and 0.81 � k � 1.0, the positive direction is the most probable, so that
the current direction is positive. It thus clearly shows that the introduction of a specific
interaction mechanism provides an efficient means for controlling transport and, in particular,
current reversals in non-equilibrium dynamical systems. This has potential applications for
the design and operation of high performance and dependable rectifiers, such as arrays of
Josephson junction [6], long Josephson junctions [7], asymmetric super conducting quantum
interference devices [8] and quantum electronic devices [5].

5. Concluding remarks

In this paper, we have examined two underdamped ratchets coupled via a perturbed asymmetric
potential. We have shown that stable transport can occur in their synchronized state, which
is achieved through a chaos-quasiperiodic bifurcation transition wherein current reversal is
completely eliminated. Based on the Lypunov stability theory and linear matrix inequalities,
some necessary and sufficient criteria for stable transport were deduced and an exact analytic
estimate of the threshold (kth) for the occurrence of collective transport was obtained. The
criteria are expressed in algebraic form. They are strongly dependent on the driving force
parameters and valid in the monostable states of the system. In the multistable state where
attractors co-exist, the dynamics and transport properties are quite complicated; and in this
regime, complete synchronization could not be reached. This requires further investigation
and will be reported elsewhere. Finally, we remark that the interaction mechanism employed
here could be realized experimentally by linking, for instance, two Josephson junctions in a
parallel configuration via ac driving, and, by adjusting the flux, such a device could serve as a
voltage rectifier which could be exploited in rapid single flux quantum technology.
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